Морские водоросли ловят азот из воздуха
17 апреля 2024, 08:05

Водоросль Braarudosphaera bigelowii в тысячекратном увеличении. (Фото: Tyler Coale / University of California, Santa Cruz) Открыть в полном размере ‹ ›

Азот нужен всем живым организмам – в конце концов, без него не будет ни аминокислот, ни азотистых оснований, составляющих генетический алфавит. Больше всего азота в воздухе (78%), однако молекула газообразного азота N2 очень прочная, вовлечь её в биохимические реакции чрезвычайно трудно. Такие умения есть только у бактерий и архей, и то далеко не у всех. Азотфиксирующие бактерии и археи утилизируют атмосферный азот с помощью целой серии ферментов, причём им нужно одновременно заботиться о том, чтобы не подпускать к этим ферментам кислород – О2 заблокирует азотфиксирующие процессы.

Что до эукариот, то никто из них – ни растения, ни животные, ни грибы, никто – брать азот из воздуха не может. Им приходится использовать уже готовые органические соединения с азотом, которые прежде принадлежали кому-то живому. Впрочем, некоторые растения сумели наладить симбиоз с азотфиксирующими бактериями, поселив их в корневых клубеньках. Это, в первую очередь, представители семейства Бобовых, но также и некоторые из Крушиновых, Восковницевых и ещё из некоторых семейств. Растения с клубеньковыми бактериями используют пойманный азот для своих нужд, но когда растение погибает, много зафиксированного азота выходит в почву, обогащая её.

Дочитать статью

Комментарии (undefined)

  • undefined8:05undefined
Комментировать статью ...ОтветитьВам может понравиться
Про науку
Показать еще ×

Этот рекомендательный блок предоставлен сервисом Sparrow и содержит материалы партнеров.

Если вы видите данный контент, значит наш умный алгоритм показывает его вам как уникальному пользователю, учитывая ваше поведение и интересы в сети.

Присоединяйтесь к числу партнеров Sparrow:
  • Обменивайтесь трафиком с высоким коэфициентом х2 с сайтами-партнерами новостной сети Sparrow, такими как RG.ru, Gazeta.ru, Tass.ru, Ura.News Forbes.ru и др.;
  • Монетизируйте аудиторию за счет партнеров, таких как Soloway, Realty.ru и др., а также улучшайте маркетинговые показатели, установив рекомендательную систему на свой сайт;
  • Размещайте рекламные материалы на федеральных и региональных сайтах СМИ, таких как Kp.ru, news.ru, zr.ru, ont.by, 7days.ru и др. - достигайте высоких конверсионных показателей!

Начать работать с Sparrow Закрыть

На информационном ресурсе (сайте) применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации) Подробнее

Впрочем, насчёт того, что никто из эукариот не может сам фиксировать азот, нужно сделать одну оговорку: в недавней статье в Science сотрудники Калифорнийского университета в Санта-Круз пишут, что это умеет делать одноклеточная морская водоросль Braarudosphaera bigelowii. О том, что она фиксирует азот, писали ещё лет десять назад. Но тогда считалось, что в ней живут бактерии-симбионты: бактерии получают от водоросли углеродные соединения, отдавая ей связанный азот в виде ионов аммония. Однако со временем исследователи заподозрили, что бактерии внутри водоросли – не самостоятельные клетки, а органеллы, вроде митохондрий или хлоропластов.

Когда-то, впрочем, органеллы были бактериями. В них до сих пор есть своя ДНК, подобно тому, как своя ДНК есть у митохондрий и хлоропластов. Генетические исследования говорят о том, что эндосимбиоз между азотфиксирующими бактериями и водорослями начался около 100 млн лет назад. Точнее, надо говорить о предках бактерий и водорослей, потому что вряд ли они за эти миллионы лет остались такими же, как были. Кстати, считается, что похожим образом появились эукариоты: в ещё более древние времена какие-то бактерии и археи решили жить вместе, то есть один внутри другого, вступив в эндосимбиотические отношения; эндосимбионт потом превратился в митохондрию. (Со временем клетки древних эукариот приобрели ещё одного бактериального эндосимбионта, на этот раз способного к фотосинтезу – он, как можно догадаться, дал начало хлоропластам.)

Однако в случае водоросли B. bigelowii возникает вопрос, действительно ли её бактерия-симбионт превратилась в органеллу. Если мы имеем дело с органеллой, то она подчиняется клеточному циклу, то есть когда водоросль делится, число органелл должно предварительно увеличиться, чтобы их получили водоросли следующего поколения. У B. bigelowii всё так и происходит: её азотные органеллы, названные нитропластами, делятся в точности перед клеточным делением, тогда же, когда делятся митохондрии с хлоропластами. Кроме того, настоящая клеточная органелла несамостоятельна в смысле молекулярного хозяйства, ей нужны белки, которые ей даёт клетка. И тут тоже оказалось, что у нитропластов не хватает белков для обмена веществ – эти белки кодируются ядерной ДНК водоросли, и водорослевая клетка, синтезировав их, отдаёт их нитропластам.

Деление клетки Braarudosphaera bigelowii. Тёмно-синий комок в центре – ядро; синие тяжи по бокам – нитропласты; светло-зелёные шары вверху – хлоропласты; зелёные вкрапления – митохондрии. (Иллюстрация: Valentina Loconte / University of California, San Francisco)

Стоит ещё раз уточнить, что саму по себе водоросль B. bigelowii описали очень давно, да и азотфиксирующие свойства её начали изучать не вчера. Сейчас исследователи выясняли, что именно представляют собой азотфиксирующие установки-нитропласты внутри неё, насколько сильно они интегрированы в водорослевую клетку, считать ли эти установки всё ещё самостоятельными бактериями или уже органеллами. Оказалось, что нитропласты действительно органеллы, а не бактерии-симбионты, и про B. bigelowii можно говорить, что азот она ловит сама. Может быть, генетические уловки, позволившие стать ей первым эукариотическим поедателем атмосферного азота, можно пересадить другим водорослям или даже высшим растениям – но это уже предмет дальнейших биотехнологических экспериментов.
17 апреля 2024

Автор:  Кирилл Стасевич
Статьи по теме
У асгардских микробов нашли клеточный скелет

У знаменитой группы архей нашли клеточные структуры, которые должны помогать им манипулировать собственной мембраной.
Безлиственные орхидеи живут с помощью бактерий

Проживая высоко на деревьях, безлиственные орхидеи держат обширный "парк" бактериальных симбионтов, снабжающих их необходимыми питательными веществами.
Аммиак из молнии

Новый метод синтеза аммиака может сделать химическое производство чище.
Бурые водоросли загоняют углекислый газ в слизь

Полисахариды, которыми покрыты бурые водоросли, запирают в себе углекислый газ прочно и надолго.
Как морские водоросли делают облака

Постоянная облачность над антарктическими водами Мирового океана связана с деятельностью фитопланктона, помогающего конденсироваться облачным каплям влаги.
Все растения на Земле произошли от единого предка

Древнейший одноклеточный организм "проглотил" бактерию и сделал из нее "солнечную электростанцию".

‹ ›

www.nkj.ru
© ФГУП «ГосНИИПП», 1989-2024